
84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

Software Specifications

System Control CSCI
Redundancy Management CSC

Thor 3.0
DP-3

Checkout and Launch Control System (CLCS)

84K00570-130

Approval:

Chief, System Software
Division

Date Date

Date Date

Date Date

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

ii

Prepared By:

Michael Symes 06/19/1998

NOTE: See “ Supporting Document Note” on following page

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

3

REVISION HISTORY

REV DESCRIPTION DATE

Basic Promoted per approval by Design Panel. ljp 5/15/98

A Promoted per approval by Design Panel. ljp 7/7/98

Supporting Document Note:
Acronyms and definitions of many common CLCS terms may be found in the
following documents: CLCS Acronyms 84K00240 and CLCS Project Glossary
84K00250.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

4

Table of Contents
1.1 REDUNDANCY MANAGEMENT DESIGN SPECIFICATION ...6

1.1.1 Set Integrity ..6
1.1.2 System Integrity...6

1.1.2.1 System Integrity Detailed Data Flow ... 7
1.1.2.2 System Integrity Context Diagram... 9
1.1.2.3 System Integrity State Definition and State Transition Diagram.. 9
1.1.2.4 System Integrity Unique Algorithm Design.. 9
1.1.2.5 System Integrity Development Tools ... 9
1.1.2.6 System Integrity External Interfaces .. 9
1.1.2.7 System Integrity Data Dictionary... 9
1.1.2.8 System Integrity Message Formats .. 9
1.1.2.9 System Integrity Display Formats.. 9
1.1.2.10 System Integrity Input Formats... 9
1.1.2.11 System Integrity Recorded Data ... 10
1.1.2.12 System Integrity Local Storage Requirements and Formats ... 10
1.1.2.13 System Integrity Printer Formats .. 10
1.1.2.14 System Integrity Interprocess Communications (C-to-C Communications) 10
1.1.2.15 System Integrity External Interface Calls (e.g., API Calling Formats) .. 10
1.1.2.16 System Integrity Table Formats .. 10

1.1.3 Subsystem Integrity ...10
1.1.3.1 Subsystem Integrity Detailed Data Flow .. 11
1.1.3.2 Subsystem Integrity Context Diagram.. 13
1.1.3.3 Subsystem Integrity State Definition and State Transition Diagram .. 14
1.1.3.4 Subsystem Integrity Unique Algorithm Design .. 16
1.1.3.5 Subsystem Integrity Development Tools.. 16
1.1.3.6 Subsystem Integrity External Interfaces ... 17
1.1.3.7 Subsystem Integrity Data Dictionary.. 17
1.1.3.8 Subsystem Integrity Message Formats ... 17
1.1.3.9 Subsystem Integrity Display Formats... 17
1.1.3.10 Subsystem Integrity Input Formats ... 17
1.1.3.11 Subsystem Integrity Recorded Data .. 17
1.1.3.12 Subsystem Integrity Local Storage Requirements and Formats .. 17
1.1.3.13 Subsystem Integrity Printer Formats ... 17
1.1.3.14 Subsystem Integrity Interprocess Communications (C-to-C Communications) 17

1.1.3.15 Subsystem Integrity External Interface Calls (e.g., API Calling Formats).............................17
1.1.3.16 Subsystem Integrity Table Formats ...28
1.1.4 Computer Integrity ..28

1.1.4.1 Computer Integrity Detailed Data Flow ... 29
1.1.4.2 Computer Integrity Context Diagram... 30
1.1.4.3 Computer Integrity State Definition and State Transition Diagram.. 30
1.1.4.4 Computer Integrity Unique Algorithm Design.. 31
1.1.4.5 Computer Integrity Development Tools ... 31
1.1.4.6 Computer Integrity External Interfaces .. 31
1.1.4.7 Computer Integrity Data Dictionary... 31
1.1.4.8 Computer Integrity Message Formats .. 31
1.1.4.9 Computer Integrity Display Formats.. 31
1.1.4.10 Computer Integrity Input Formats... 31
1.1.4.11 Computer Integrity Recorded Data ... 31
1.1.4.12 Computer Integrity Local Storage Requirements and Formats.. 31
1.1.4.13 Computer Integrity Printer Formats .. 31
1.1.4.14 Computer Integrity Interprocess Communications (C-to-C Communications) 31
1.1.4.15 Computer Integrity External Interface Calls (e.g., API Calling Formats) .. 32
1.1.4.16 Computer Integrity Table Formats .. 32

1.1.5 System Configuration Table...32
1.1.5.1 System Configuration Table Detailed Data Flow.. 33
1.1.5.2 System Configuration Table Context Diagram ... 33
1.1.5.3 System Configuration Table State Definition and State Transition Diagram .. 33
1.1.5.4 System Configuration Table Unique Algorithm Design .. 33

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

5

1.1.5.5 System Configuration Table Development Tools ... 33
1.1.5.6 System Configuration Table External Interfaces... 34
1.1.5.7 System Configuration Table Data Dictionary ... 35
1.1.5.8 System Configuration Table Message Formats... 35
1.1.5.9 System Configuration Table Display Formats .. 35
1.1.5.10 System Configuration Table Input Formats ... 35
1.1.5.11 System Configuration Table Recorded Data.. 35
1.1.5.12 System Configuration Table Local Storage Requirements and Formats.. 35
1.1.5.13 System Configuration Table Printer Formats... 35
1.1.5.14 System Configuration Table Interprocess Communications (C-to-C Communications)................... 35
1.1.5.15 System Configuration Table External Interface Calls (e.g., API Calling Formats)........................... 40
1.1.5.16 System Configuration Table Table Formats .. 42

1.1.6 SCT Build ...47
1.1.6.1 SCT Build Detailed Data Flow .. 48
1.1.6.2 SCT Build System Context Diagram.. 48
1.1.6.3 SCT Build State Definition and State Transition Diagram .. 48
1.1.6.4 SCT Build Unique Algorithm Design .. 48
1.1.6.5 SCT Build Development Tools.. 48
1.1.6.6 SCT Build External Interfaces ... 49
1.1.6.7 SCT Build Data Dictionary.. 49
1.1.6.8 SCT Build Message Formats ... 49
1.1.6.9 SCT Build Display Formats... 49
1.1.6.10 SCT Build Input Formats ... 50
1.1.6.11 SCT Build Recorded Data .. 50
1.1.6.12 SCT Build Local Storage Requirements and Formats .. 50
1.1.6.13 SCT Build Printer Formats ... 50
1.1.6.14 SCT Build Interprocess Communications (C-to-C Communications) ... 50
1.1.6.15 SCT Build External Interface Calls (e.g., API Calling Formats)... 50
1.1.6.16 SCT Build Table Formats... 50

1.1.7 Redundancy Management Test Plan ..50
1.1.7.1 Test Environment.. 50
1.1.7.2 Test Tools... 50
1.1.7.3 Test Plan .. 50

1.2 NOTES ..51
1.2.1 System Event Codes...51
1.2.2 Thor Process Table ...52
1.2.3 Message Stack...52

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

6

1.1 Redundancy Management Design Specification

As discussed above, the Redundancy Management CSC consists of 6 major parts. Each of these parts is discussed
separately below. For Thor 3.0, only the sections regarding Subsystem Integrity are the focus of this document. In
an effort to convert to the current CLCS DP3 template, many of the sections within this document outside the scope
of this discussion simply state TBD. It is not the intention of this document to present that information. Information
relevant to those sections outside the scope of Thor 3.0 will be provided during the Atlas delivery.

1.1.1 Set Integrity

Set Integrity is not provided in Thor.

1.1.2 System Integrity

System Integrity’s role is to monitor data about the current state of the system and its parts, and based on that
information determine whether the system is healthy. When a failure is detected, SI determines the appropriate
recovery action. SI consists of four parts: the first is resident on the Master CCP and is the part generally referred to
as SI or SI Master. This part of SI contains the logic to determine that a failure has occurred and what recovery
action is appropriate. The second is a Health Count Monitor that resides on the DDP. A key factor in the health of a
computer is its ability to periodically send a health counter FD. This FD is initially received at the DDP, then
distributed to all other computers. The latency of data to the CCP can be as much as 2 SSRs. In order to meet
performance requirements, detection of a missed health counter must take place on the DDP prior to the distribution.
The Health Count Monitor executes periodically to ensure that all health counters have been received. If any have
not been received, the Health Count Monitor issues a Missed Health Counter SEC to SI on the Master CCP. The
third part is referred to as Mini-SI and resides with the Master SCT prior to initialization of the Master CCP. In
order to change the set configuration prior to initialization of the Master CCP and DDP, the Master SCT must be
modifiable prior to initialization of the Master CCP. The Redundancy Management initialization process allows the
Master SCT to execute on any computer. Because SI supplies all modifications to the SCT, a small version of SI
must be able to run on other computers as well. This is a simplified SI. It does no analysis or recovery, but is able
to process CCWS initiated configuration changes and is able to process SECs from other computers. Finally, a
small layer of SI must reside on the Master CCWS to process API invocations from the System Status Viewer and
other software able to request SCT changes. This API layer receives the procedure call and forwards the request to
either Mini-SI or SI at the Master CCP, whichever is active.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

7

1.1.2.1 System Integrity Detailed Data Flow

SI Master/
Mini-SI

Subsystem
Integrity

System Event Codes,
Subsystem Heath FDs

System Configuration Requests

SCT

System Message
Viewer

System Messages

 Recovery SECs (master only)

Health Count
Monitor

DDP

HC FDs
Missed Packets

SI API

System Status
Viewer

Configuration Change Requests

Configuration Change SECs

SCT Updates

HC/Packet FDs

Figure 1. SI Detailed Data Flow

Inputs to SI Master or Mini-SI:
• System Event Codes: These event codes are messages generated by Subsystem Integrity that serve as

the primary information source for SI decisions. There are two general classes of these SECs:
• State Changes: As a subsystem completes initialization, it passes through a series of states (In

configuration, Loaded, Communicating, Go). As it enters each state, a System Event Code is
generated to inform SI that it has achieved the state. SI then incorporates that information into the
master SCT. If a subsystem fails, or is directed to terminate, it also sends SECs, if able to notify SI of
the movement into a lower state. Because many failure modes will not allow these SECs to be issued,
SI does not rely on them for information, but uses them if available.

• Error Reports: These error reports are generated by the Health Count Monitor, and are used to inform
Master SI that the Health Count Monitor has detected either a missing HC, or a HC that has an
unexpected value.

• Subsystem Health FDs: These FDs contain specific health information data, usually performance
related that can be used by SI to infer information about the health of the box. Thor constraint: These
FDs are not used in health determination, but error related FDs are relayed as System Messages to
allow notification of unexpected events.

• System Configuration Requests: The SI API generates the requests to modify the configuration. This
typically occurs prior to initialization of the test set, but also occurs when manually reconfiguring
around a failed piece of hardware, or to activate hardware that was allocated to the test set, but not
initially used. SI does some sanity checking to ensure the request is valid, then updates the SCT to
reflect the requested change.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

8

Outputs from SI Master or Mini-SI:
• SCT Updates: Any modifications to the system configuration are recorded through calls to the SCT

interface. By definition, the Master SCT is the copy of the SCT that resides on the same computer as
Mini-SI or SI Master. The Master SCT then propagates these updates to all copies of the SCT.

Outputs from SI Master:
• Recovery System Event Codes: These messages direct subsystems to switch, terminate or take other

recovery actions.
• System Messages: These user messages allow the operations team to track events in the system.

Inputs to the Health Count Monitor:
• HC FDs: These FDs are generated cyclically by Subsystem Integrity in all subsystems in all roles

(active, standby, spare). An incremented health counter indicates the subsystem believes it is healthy.
A decremented health counter indicates the subsystem believes it is not healthy. An unchanged health
counter indicates that an update was not received. Any unexpected value results in a SEC to SI Master
to notify it of the failure.

• Missed Packet Notification: Health Count Monitor provides an API to the DDP CSCI so that it can
notify SI of a missed packet. This local procedure call on the part of the DDP CSCI results in an SEC
being sent by Health Count Monitor to Master SI.

Outputs from Health Count Monitor:
• System Event Codes: These messages to Master SI inform it that a health counter was not received or

contained an unexpected value, or that an expected packet was not received.
Inputs to SI API:

• Requests for configuration changes: These invocations of the local API are made by the System Status
Viewer as part of the initial configuration of the test set. It allows re-allocating subsystems to
resources or activating resources that were allocated to the test set, but are not yet in use by the test set.
It also provides an interface of users to manually invoke switchover or termination.

 Outputs from SI API:
• Configuration Change Requests: These messages relay the requests made by the users to either SI

Master or Mini-SI..

1.1.2.1.1 Checking Health Counters
Health Counters are received for each computer in the system. The exact method of receipt varies by computer type.
All Health Counter checking takes place on the DDP.

1.1.2.1.1.1 Gateways
The DDP expects data periodically from the gateways, and notifies SI on the Master CCP via a Missed Packet
System Event Code when a packet is not received. Each of these packets should contain a Health Counter FD in
them, Health Count Monitor ensures that they are received and incremented.

1.1.2.1.1.2 CCPs and DDPs
Health Counter FDs are generated for the CCPs and DDPs. The Data Distribution SSR process invokes the HC
Check software once each iteration. This software checks the current values of CCP and DDP FDs against expected
values. Any discrepancies are reported to SI on the master CCP via the HC Did Not Increment or HC Decremented
SECs.

The periodic check under an existing process minimizes the CPU required for this high frequency operation.
However, there is no apparent difference between a missed CCP/DDP HC and a CCP/DDP HC that was sent, but
did not increment. The design of HC generation is such that sending a HC that has not changed should never occur.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

9

1.1.2.1.1.3 CCWSs
CCWS HC monitoring also occurs at the DDP, and uses the same general techniques as the CCPs and DDPs.
However, the health check for CCWSs is at the DSR rather than at the SSR. Given the lower frequency and lower
priority, this check is in its own process.

1.1.2.1.2 Handling System Event Codes
SI Master receives SECs directly from Reliable Messaging through a local queue. The System Event Code handler
is a standalone process that suspends on the Reliable Messaging queue. When a SEC is received, it is processed
immediately. Because there is a tight deadline on this aperiodic process, its priority is equivalent to that of a 10ms
cyclic process. A SEC that notifies SI of a state change is used to update the SCT. SI generates a System Message
to notify the user community of the state change. Error reports also generate System Messages.
Significant additional handling of events and error recovery provided in Atlas.

1.1.2.2 System Integrity Context Diagram
TBD

1.1.2.3 System Integrity State Definition and State Transition Diagram
TBD

1.1.2.4 System Integrity Unique Algorithm Design
TBD

1.1.2.5 System Integrity Development Tools
TBD

1.1.2.6 System Integrity External Interfaces
System Integrity generates no System Messages. Subsystem state change messages are generated out of the SCT.

1.1.2.7 System Integrity Data Dictionary
TBD

1.1.2.8 System Integrity Message Formats
TBD

1.1.2.9 System Integrity Display Formats
System Integrity owns no displays

1.1.2.10 System Integrity Input Formats
System Integrity receives the following System Event Codes:

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

10

Table I. System Event Codes

SEC Number Name Source Destination
256 Subsystem Loaded SSI SI (Master SCT)
257 Subsystem Communicating SSI SI (Master SCT)
258 Subsystem Go SSI SI (Master SCT)
259 Subsystem NoGo SSI SI (Master SCT)
260 Not Communicating
261 Subsystem Not Loaded SSI SI (Master SCT)
393 Subsystem running ORT SSI SI
394 Subsystem not running

ORT
SSI SI (Master SCT)

395 No Packet Received from
GW

SI-DDP SI-CCP

396 Standby GSE detected no
poll from Active GSE

GSEnS SI

397 GSE reports no response
from bus

GSEnA SI

398 HC not Incremented SI-DDP SI-CCP
399 HC has Decremented SI-DDP SI-CCP
Additional - to be defined
during implementation

User requested
configuration changes

SI-API SI-CCP

1.1.2.11 System Integrity Recorded Data
System Integrity records no data other than that automatically recorded through RM.

1.1.2.12 System Integrity Local Storage Requirements and Formats
TBD

1.1.2.13 System Integrity Printer Formats
System Integrity produces no printed data

1.1.2.14 System Integrity Interprocess Communications (C-to-C Communications)
All SI interprocess communications are through SECs as defined above.

1.1.2.15 System Integrity External Interface Calls (e.g., API Calling Formats)
An API is provided to allow the System Status Viewer to request configuration changes. This API is available at

http://www-clcs/project/syscontrol/redman/ClassList.html

1.1.2.16 System Integrity Table Formats
System Integrity uses no files.

1.1.3 Subsystem Integrity

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

11

Subsystem Integrity (SSI) executes in each CCP, DDP, CCWS and monitors the health of the subsystem. A similar
SSI also resides in each of the gateways, however it is not part of this CSC and is therefore not represented within
this document. SSI reports this health, and any subsystem state changes to System Integrity. The primary SSI to SI
communication path is the Health Counter FD. SSI analyzes data available to it about the subsystem health, then
sends either a healthy health counter (incremented) or an unhealthy health counter (decremented). SI also responds
to control directives issued by SI.

Figure 2. Subsystem Integrity Classes

Subsystem Integrity is composed of the following classes:
• SSIProcessHeartCyclic: This class is the local health counter that ensures each process is executing

correctly.
• SSIProcessHeartAcyclic: This class is the local health counter that ensures each process is executing

correctly.
• SSIProcessError: This class provides the interface and processing for individual errors that occur

during process execution.
• SSIProcessRegister: This class provides the registration capabilities for a process to be formally

registered. It contains data or pointers to data concerning the registration status of a process.
• SSISubsystem: This class is an extension of the readable class used by the SCT. It provides a

mechanism for the SSI to track its own state, and for OPS/CM to request the transition to the Loaded,
Comm, and Go states.

• RedManHealthCountFD: This class is for the Application Health Counter FD. It provides a
mechanism for SSI to report its health, as determined by SSI, to SI.

• RedManProcess: This class is also an extension of the class defined by the SCT. It contains data or
pointers to data concerning the health and criticality of individual processes in the subsystem.

1.1.3.1 Subsystem Integrity Detailed Data Flow
Startup interactions between SI and the Ops/CM Server are shown in Figure 3. Ops CM Server initiates the
processes in the subsystem. Early in the startup sequence, Ops/CM loads the Redundancy Management Software.
As part of its loading, Redundancy Management loads the SCT into shared memory and activates all Redundancy
Management processes including a high priority 100 Hz process on the CCP and the DDP or 10 Hz process on the
CCWS that monitors its subsystem health. Control is then returned to Ops CM Manager. Ops/CM Manager
continues registering and loading the other System Software. When all software has been registered and loaded,
Ops/CM Manager invokes the Subsystem.Load method on the My subsystem from the SCT. This marks local data,

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

12

not visible through the API, as OPS/CM Loaded. At its next cycle, the SSI process checks the state and determines
it has changed. A state transition is requested by issuing the Subsystem Loaded SEC to SI. Assuming SI agrees with
the request, the SCT will be updated. SSI then begins sending the Health Counter FD as part of its 100 Hz process.
This should eventually be reflected in the SCT as a transition to the Communicating state. At some later point, when
all System Software is executing, the same sequence of events occurs to move the subsystem to the Go state.

Figure 3. OPS/CM SSI Interactions

Figure 4 shows the typical interactions between an cyclic application process and Subsystem Integrity. Acyclic
interactions between SSI and SI are identical to the cyclic operations with the exception that if the BeatEnd is
specified, SSI checks for the PID rather than the heartbeat at its next scheduled health check. At an application-
specified rate, the Application Process invokes the appropriate process heartbeat method. This updates the shared
memory Heartbeat for the process. Periodically, at 10ms intervals (100ms for 10 Hz SSI), the SSI process checks
for those heartbeats that should have arrived in the last cycle (not all of them). If all expected have been received, as
well as having met additional health criteria as specified by SSI, it then increments the subsystem health counter and
sends it to SI via the Health Counter FD. If at some point an expected heartbeat is not received from a process
marked as essential in the SCT, SSI decrements the health counter instead of incrementing it and sends it on to SI.
Any Process failure results in the generation of a Process Running FD with the appropriate state set.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

13

Application
‘Process

SSIProcessHeartCyclic SSI HC FD SI

Beat

CheckHealth
Send

HC FD(No Beat)

CheckHealth

Send
HC FD (dec)

Figure 4. Application-SSI Interactions

1.1.3.2 Subsystem Integrity Context Diagram
SSI has limited visibility directly with the system. All APIs, with the exception of SSISubsystem, communicate
through shared memory. SSI does communicate with FD Services (FDs), System Services (SECs), Syetem Message
Services (Process Error Messages). Refer to Figure 5 for the system context of SSI.

Figure 5 SSI Context Diagram

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

14

1.1.3.3 Subsystem Integrity State Definition and State Transition Diagram
One of the mechanisms by which SSI tracks the current health of a process is through the process states. As part of
the regular subsystem health check at the DSR or SSR rate, subsystem cycles through each of the processes
allocated to its process container, and queries each of its processes as to their health. In an effort to increase the
efficiency of this poll and reduce the time required to exhaust the container, only registered processes are to be
scanned. Once a process is registered, either formally or informally, as described in the registration and heartbeat
API definitions in this document, it is then placed within the appropriate subsystem process container and its state is
locally transitioned to a registered state. Once registered, the information is sent to the Master SCT, where it is
published globally. All process state information is maintained globally in the SCT. When polled for its health, a
registered process can be in one of several states. A description of the possible states and how they are determined
is defined below.

• Not Registered: A process is by default in this state. No action occurs as a result of this state.
• Registered: A process is transitioned into this state when it is either formally or informally registered. A

process running FD, with the registered state set, is sent out as well as a process name FD is issued with the
corresponding process number as determined by the registration. SI sends out the FDs.

• Running: Once a process provides its first heartbeat or resumes a normal heartbeat, it transitions into this
state. SI issues a process running FD, with the running state set.

• Stopped: Should a process fail to provide at least one heartbeat within its specified period and the process
exists, it is transitioned into this state. SI issues a process running FD, with the stopped state set.

• Failed: If a process fails to provide a scheduled heartbeat, or is currently in the stopped state and ceases to
exist, then it transitions into this state. SI issues a process running FD, with the failed state set.

• Complete: A process transitions into this state when the process is unregistered. SI issues a process
running FD with the complete state set.

Once a process is unregistered, a process running FD, with the complete state set, is issued. The process is then
removed from the process container of SSI and is therefore no longer polled for its health; potentially reducing the
number of processes SSI must poll in order to determine its own health. The state diagram is shown by Figure 6.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

15

Figure 6 Process State Transition Diagram

A table driven polymorphic state machine is utilized to drive the states. This technique has been chosen for both
efficiency and completeness. The approach ensures that all possible state combinations are represented guaranteeing
that the system is able to properly handle any valid state change request as well as all possible invalid change
requests. The state change classes are represented by Figure 7. In order to accomplish the global maintenance of
the process states, two new system event codes are utilized, these are 442 (SSI to SI) and 443 (SI to SSI).

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

16

Figure 7 Process State Class Diagram

1.1.3.4 Subsystem Integrity Unique Algorithm Design
The process heartbeat algorithm within SSI is designed to work with both acyclic and cyclic heartbeats. Two modes
of heartbeat operation will be provided to accomplish the monitoring capability, i.e., a heartbeat mode and a PID
mode. Each process within SSI controls and monitors its own heartbeat data and reporting. The algorithm is
presented in Figure 14.

1.1.3.5 Subsystem Integrity Development Tools
The tools outlined in the following table are used to implement Subsystem Integrity.

Table II Subsystem Integrity Development Tools

Tool(s) Use
Misc. Text Editors Code development
ProDev UT and UIT
Visio Technical Diagrams (Class, Sequence, DFD, etc.)
Word Document preparation

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

17

1.1.3.6 Subsystem Integrity External Interfaces
The external interfaces are provided in the sections that follow.

1.1.3.7 Subsystem Integrity Data Dictionary
TBD

1.1.3.8 Subsystem Integrity Message Formats
Message Id: SCT_PROCESS_ERROR
Message Type: Details
Message Severity: Error

Process %s in subsystem %s failed. Reason Code: %d %s.

Insert 1: Process name
Insert 2: Subsystem name
Insert 3: User Defined Numeric reason code
Insert 4: User Defined Text reason

Help Text:
The process specified (insert 1) notified Subsystem Integrity of the Error specified (Insert 4).

1.1.3.9 Subsystem Integrity Display Formats
Subsystem Integrity has no displays.

1.1.3.10 Subsystem Integrity Input Formats
Subsystem Integrity accepts no external inputs.

1.1.3.11 Subsystem Integrity Recorded Data
All Subsystem to System Integrity data transfer is via either FDs or RM messages (SECs), and is therefore
automatically recorded. SSI records no other data.

1.1.3.12 Subsystem Integrity Local Storage Requirements and Formats
Subsystem Integrity requires has no local tables or files.

1.1.3.13 Subsystem Integrity Printer Formats
Subsystem Integrity prints no data.

1.1.3.14 Subsystem Integrity Interprocess Communications (C-to-C Communications)
Shared memory is the primary vehicle for interprocess communications. Interfaces resident in non-Redundancy
Management programs write all data to shared memory in local (to the computer) areas of the SCT. Subsystem
Integrity executes periodically, at the SSR or DSR, and checks this data for changes. These changes are taken into
account in the generation of the HC FD, which is also part of the SSR or DSR process. The C++ class definitions
and the compiler define the format of this data.

There is no cross processor communication between parts of SSI.

1.1.3.15 Subsystem Integrity External Interface Calls (e.g., API Calling Formats)

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

18

1.1.3.15.1 API Layer Hierarchy
In an effort to provide the APIs while minimizing the indirect dependencies a user of these APIs may encounter,
Redundancy Management (RedMan) has built several layers into its API architecture. Figure 8 represents these
layers as the RTPS layer, the Apps layer and the RedMan layer, each of which are discussed in detail in the sections
that follow. In addition, it also displays the accessibility of these layers to those users, depicted in the diagram as
“Users”, of the Redundancy Management services..

Figure 8 API Layer

1.1.3.15.1.1 RTPS Layer
The RTPS Layer, or R-Layer, is the simplest (lowest) of the layers. It is designed to provide full SCT read support,
Process Heartbeats, Process Registration Services, and Process Error Reporting without linking in any additional
services other than that being provided by the API. Thereby minimizing any unforeseen link dependencies, thus
eliminating any circular link dependencies resulting from the use of the supplied API. In addition to minimizing the
link dependencies, this layer is designed to minimize the resource and runtime impact on the user of the API. All
communications necessary by Subsystem Integrity at this layer is accomplished through shared memory, utilizing
semaphores where appropriate to ensure data integrity.

1.1.3.15.1.2 Applications (APPS) Layer
The Application Layer is the next layer within the hierarchy. At this layer it begins to bring in dependencies beyond
the API, e.g., RM and its dependencies. This layer has been designed to provide authorized SCT writes, Subsystem
Initialization, as well as providing full RTPS Layer capabilities. As with the RTPS Layer, this layer is constructed
with minimal dependencies in mind.

1.1.3.15.1.3 Redundancy Management (RedMan) Layer
The RedMan Layer is the full implementation of Redundancy Management. This layer includes System Integrity,
Subsystem Integrity, Computer Integrity, etc. This layer is not accessible outside of RedMan. It provides no user
interfaces.

1.1.3.15.2 API Descriptions
Subsystem Integrity provides the following Application Programming Interfaces, each of which is presented in
detail in the subsections that follow.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

19

• Process Registration
• Process Heartbeats
• Process Error Reporting
• Subsystem Initialization

Descriptions of these APIs are available at:
http://www-clcs/project/syscontrol/redman/ClassList.html

1.1.3.15.3 Process Registration API
Through Subsystem Integrity, an API is provided allowing processes to be formally registered. Typically, processes
are not directly registering themselves, that is a controlling process (ITS, CMP, HMP) formally registers those
processes it has control over. All essential processes can only be registered through this interface. In order to
accomplish the global maintenance of the registration, two new system event codes will be utilized, these are 446
(SSI to SI) and 447 (SI to SSI).

1.1.3.15.3.1 Process Registration Functional Description
Process registration is maintained globally in the SCT by registering the process with Subsystem Integrity locally,
then Subsystem Integrity notifies the Master SCT of the registration through System Integrity. System Integrity
notifies the Master SCT and it performs a registration of the process. Once registered in the Master, it then
distributes the registered process notification out to all of the Client SCTs where they perform a similar registration,
thus finalizing the propagating of the registration out to all SCTs. The unregistration of the process is performed in
the same manner. The act of registering a process reserves a process object within the SCT corresponding to the
process being registered. If a process was previously registered then unregistered, and is being registered again,
then an attempt is made during the registration to provide the same SCT process object, thus preserving the process
name and process number relationship from one registration to another. However this relationship is not guaranteed
since SSI has a predetermined number of processes it can have registerer at any given instance, if SSI needs to
register a process it will select an available process in the SCT for registration purposes; possibly a formerly
unregistered process thus making the associated process number unavailable until the process is unregistered... In
order to eliminate dependencies, this API has been implemented at the RTPS Layer. Therefore, all communication
between the API and Subsystem Integrity is accomplished through shared memory. The notification between
Subsystem Integrity and the Master SCT as well as the Master SCT and the Client SCTs is accomplished via System
Event Codes. The process name and the process running FD are issued by the Master SCT once the Master receives
the registration notification, thus eliminating any duplicate FDs from being generated. The process number under
which the process was registered is provided as a result of the registration, as well as through an additional interface
within the API. The sequence diagram in Figure 10 represents this description.

1.1.3.15.3.2 Process Registration Class Diagram
The implementation of the Process Registration requires several new classes be developed within this CSC. These
classes include the API as well as new classes at the RTPS layer allowing RedMan the ability to perform the process
registration without 1) having link dependencies, and 2) without exposing the underlying behavior required to
accomplish the registration. The existing, as well as the new classes required, can be seen in the class diagram of
Figure 9.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

20

Figure 9 Process Register Class Diagram

1.1.3.15.3.3 Process Registration Sequence Diagram
The sequence diagram for the registration operations can be found in the figure below.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

21

Figure 10 Process Registration Sequence Diagram

1.1.3.15.4 Process Heartbeat API
Through Subsystem Integrity (SSI), an API is provided allowing processes to periodically or aperiodically inform
Subsystem Integrity that they are alive and processing. All RTPS process must report a heartbeat to SSI. In
addition, all application processes must report a heartbeat to SSI. In an effort to minimize the impact on a process
using the heartbeat API, it is implemented at the RTPS layer within the Redundancy Management API hierarchy
whereby all communications to SSI is accomplished through shared memory.

1.1.3.15.4.1 Process Heartbeat Functional Description
There are two flavors of heartbeats provided by SSI. These are the Cyclic and the Acyclic heartbeats. At the
moment a process constructs either of the heartbeat types, the heartbeat object attempts to register the process. One
of two actions can occur. First, if the registration object determines that the process is currently registered, then it
simply provides the process object to the heartbeat object and returns control. Second, if the registration object
determines that the process is not currently registered, then the process becomes registered however the registration
is an informal registration, i.e., the process is considered non-essential. Therefore it is imperative that the
controlling process, that initially performed the formal registration, provide the registered process with the name it
was registered under. If the process does not provide the heartbeat API with the name it was registered under, then a
type two-(2) registration occurs causing the process to become registered as an informal process. If this happens,

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

22

then the possibility exists that a process formally registered as an essential process has its heartbeats monitored as
though it were a non-essential process. All informal registrations produce non-essential processes, unless formally
registered as essential. Once the process has been registered, either formally or informally, then a process has been
reserved within the SCT corresponding to that process allowing communication between the heartbeat API and SSI.
Currently the number of possible processes represented in the SCT is 100, however this number is configurable. It
is important to note that the Process Running and Process Name FDs need to exist in the OLDB equivalent or
exceeding the number of processes supported by SSI for each subsystem within the TCID. Once the heartbeat API
has been constructed, the matter is simply to provide a heartbeat to SSI. This is done in one of two ways, either
cyclically or acyclically.

• Cyclic Heartbeat: The cyclic heartbeat is provided by the process at the rate provided to the heartbeat object
during construction. To accomplish this, a Beat() interface has been provided. Once the process provides
its first Beat(), then this is an indication to SSI to start watching the process for heartbeats. From this point,
SSI continually monitors the process until the heartbeat object is destroyed. From the first Beat(), until the
object is destroyed, it is the responsibility of the process to provide heartbeats to SSI at the specified rate.
It is okay to provide more than one heartbeat within the specified period, however if during the specified
period the process does not provide at least one heartbeat, then the process is considered to be unhealthy by
SSI.

• Acyclic Heartbeat: The acyclic heartbeat is constructed with a default period, provided by the process
utilizing the API. To accomplish the acyclic heartbeat, a process has the ability to start the heartbeat
monitor using the default period provided in the constructor, or specify a period for that heartbeat. Once
the BeatStart() interface is utilized then SSI begins to monitor the process for a beat within the period
specified. During that beat period, the process has the ability to extend the beat for a particular period by
issuing a BeatExtend(). Once received, it indicates to SSI that it should recalculate the current heartbeat
rate for that cycle. The end of the beat cycle is completed by the process sending a BeatEnd()through the
API. This informs SSI to discontinue its monitoring of heartbeats for this process until the next BeatStart()
occurs. This interface provides the ability of truly event driven processes to provide a heartbeat to SSI only
when necessary, i.e., when they need to process an event. As with the cyclic heartbeat, it is okay for the
process to complete its heartbeat cycle before the specified period, however if it should fail to complete the
cycle within the designated rate, then the process is considered to be unhealthy by SSI.

It is important to note that it is possible for an acyclic process to die following the issuance of a BeatEnd()indicating
to SSI to stop watching the heartbeats from a process. This could provide a false indication to SSI that the process is
simply not processing any events. In an effort to eliminate this false indication, the acyclic process monitoring has
two modes of operation, 1) during a valid heartbeat cycle, SSI monitors for heartbeats 2) once the heartbeat cycle
completes, SSI begins to monitor the PID for its existence in the PID Table within the OS. The PID is extracted
from the OS and stored within the SCT once the heartbeat API is constructed by the process. An error messaeg is
produced if a process has not been formally registered at the time of the informal registration attempt. The sequence
diagrams in both Figure 12 and Figure 13 represent this description.

1.1.3.15.4.2 Process Heartbeat Class Diagram(s)
The implementation of the heartbeat classes is designed in order to take advantage of the API layer architecture
displayed in Figure 8. In order to adhere to the layer restriction while providing both the cyclic and the acyclic
interfaces, several new classes are introduced. All of the classes as well as their interactions are shown in Figure 11.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

23

Figure 11 Process Heartbeat Class Diagram

1.1.3.15.4.3 Process Heartbeat Sequence Diagram(s)
The sequence diagrams for both the cyclic and the acyclic heartbeat operations can be found in the figures below.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

24

Figure 12 Cyclic Heartbeat Sequence Diagram

Figure 13 Acyclic Heartbeat Sequence Diagram

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

25

1.1.3.15.4.4 Process Heartbeat Algorithm
Figure 14 represents the heartbeat verifications algorithm utilized by SSI when on its scheduled health check.

Figure 14 SSI Heartbeat Algorithm

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

26

1.1.3.15.5 Process Error Reporting API
Through SSI, an API is provided allowing processes the ability to report runtime errors to SSI. These errors are one
of the mechanisms that SSI utilizes in determining the health status of a subsystem. An error has two attributes, 1)
the error type, and 2) the error severity. A description of each is presented below.

• Error Type:
− Data: Typically this type of error indicates that a process has encountered an error with its data, i.e., a

data element does not contain an expected value.
− Execution: Typically this type of error indicates that a process has encountered an error in its logic.

The software may have encountered a section of source code that it was not expecting to enter during
normal operations.

− Interface: Typically this type of error indicates that a process has encountered an error with a data
element passed through its interface. It may be that the data is corrupted or empty (null pointer/value)
causing some type of default processing to occur.

• Error Severity:
− Information: Typically this level of error indicates that a process has encountered a minor error; it (the

process encountering the error) is able to recover completely from the error and continue unaffected;
the error condition simply needs to be logged.

− Warning: Typically this level of error indicates that a process has encountered an error and recovery is
attempted by the process encountering the error, if necessary or possible. This may indicate that the
normal operations of the process, from the point at which the error was reported may be at risk;
possibly affecting the overall operability of the process.

− Error: Typically this level of error indicates that a process has encountered a severe error in its
processing and it (the process encountering the error) will attempt to recover if possible. This error
may as well indicate that system operability is at risk.

− Fatal: Typically this level of error indicates that a process has encountered a severe error in its
processing and it (the process encountering the error) is unable to recover. Processing from the point
where the error is encountered may be futile. This error indicates that overall system operability is at
risk. Once an error of this nature is encountered and the process is essential, SSI decrements its health
counter and SI transitions the affected subsystem to a communicating state. The affected process
remains in the failed state until it is either unregistered or cleared by SSI.

1.1.3.15.5.1 Process Error Reporting Functional Description
The process error reporting is implemented at the lowest API layer to eliminate link dependencies. Therefore all
communications necessary to report the error to SSI occur through shared memory. Once a process constructs an
instance of the error reporting API, the new error object locates the local subsystem (SSI) thus creating a direct
communication path between the error object and SSI through shared memory. When the process is encountered
with an error and sends a Report() message to the error object, the message is delivered directly to SSI through the
API. Based upon which network the subsystem is located on, either the DCN or the RTCN, the reported error
messages will be flushed by SSI to System Messages at a DSR or SSR respectively. The sequence diagram in
Figure 16 represents this description.

1.1.3.15.5.2 Process Error Reporting Class Diagram(s)
The implementation of the process error reporting API requires modifications to the current error reporting class in
order to accommodate the RedMan API layer architecture represented by Figure 8. The new class is depicted below
as Figure 15.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

27

Figure 15 Process Error Class Diagram

1.1.3.15.5.3 Process Error Reporting Sequence Diagram(s)
The process error sequence diagram is shown below.

Figure 16 Process Error Sequence Diagram

1.1.3.15.6 Subsystem Initialization API
The SSISubsystem provides an interface for Ops/CM to notify SI that the box has completed the transitions to
Loaded and Go. (Other transitions are determined by data available to SI). Thor 3.0 does not affect this interface.

1.1.3.15.6.1 Specification:
class SSISubsystem

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

28

{
public:
SSISubsystem();
void Loaded();
void Go();
void NoGo();
void ~SSISubsystem ();
}

1.1.3.15.6.2 SSISubsystem
This constructor creates the shared memory connection so that the OPS/CM process can communicate this
information with the SI SSR process. This constructor must be invoked after SI has been loaded.

SSISubsystem();

Arguments: N/A
Return Value: N/A

1.1.3.15.6.3 Loaded
This interface is to be invoked when OPS CM has successfully loaded the subsystem. Invocation results in the
Loaded SEC being generated and sent to SI.

void Loaded();

Arguments: N/A
Return Value: N/A

1.1.3.15.6.4 Go
This interface is to be invoked when OPS CM has successfully started all System Software. Invocation
results in the Go SEC being generated and sent to SI.

void Go();

Arguments: N/A
Return Value: N/A

1.1.3.15.6.5 NoGo
This interface is to be invoked when OPS CM succeeds in loading Subsystem Integrity but fails loading other
system software. Invocation results in the No Go SEC being generated and sent to SI.

void NoGo();

Arguments: N/A
Return Value: N/A

1.1.3.16 Subsystem Integrity Table Formats

Subsystem Integrity uses no tables.

1.1.4 Computer Integrity

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

29

Computer Integrity’s role is to gather performance data and determine whether a platform is healthy. Although
multiple subsystems may be present on a single platform (CCP/DDP), only one copy of Computer Integrity will
execute on that platform.

+SerialNumber()

SCTRComputer

-mAvgPercentCPUUsed
-mAvgPercentMemoryAv
-mAvgPercentDiskUsed
-mNumberDiskAccesses
-mNumberDiskErrors

SSISCTComputer

Figure 17. Computer Integrity Classes

Computer Integrity is composed of the following class:

SSISCTComputer: This class gathers the performance data from the OS and determines whether the platform is
healthy. The private data attributes of the SSISCTComputer Class among others are inputs to a method that
determines Computer health.

1.1.4.1 Computer Integrity Detailed Data Flow
Computer Integrity gathers performance data from the operating system (OS) at 10 second intervals, publishes the
gathered data as SECs and FDs (see Requirements), and determines if the platform is healthy.

Computer Integrity also monitors Unix kernel errors through the syslogd message services (see Table 1.1.1.1). For
Thor, if an error is received from the OS kernel with a priority of LOG_CRIT or below, the platform will be marked
as unhealthy. Obtaining error messages about the Unix kernel through syslogd is not entirely satisfactory for a
number of reasons:

• Locating a reason for the error would involve scanning the message text for keywords - No standard
format - Highly OS specific

• It is undocumented what specific platform conditions would differentiate LOG_EMERG vs.
LOG_ALERT vs. LOG_CRIT

.
Unfortunately, syslogd seems to be the only semi-portable method for obtaining information about hardware errors
from the OS. Other solutions are currently being sought.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

30

OS Layer

CPU MEMORY OTHERDISK

COMPUTER
INTEGRITY

Hardware Layer

Generated
FDs

Generated
SECs

Performance Data
@ 0.1 Hz Health Data -

Syslog Errors

SUBSYSTEM
INTEGRITY

Healthy? Yes/No

req rsp

Figure 18. Computer Integrity Data Flow

Table III. SYSLOG Message Priority Types

Message Priority Type Description Unhealthy if
recvd?

LOG_EMERG A panic condition. This is normally broadcast to all users. Yes
LOG_ALERT A condition that should be corrected immediately, such as a

corrupted system database
Yes

LOG_CRIT Critical conditions, e.g., hard device errors Yes
LOG_ERR Errors No/Maybe
LOG_WARNING Warning messages No/Maybe
LOG_NOTICE Conditions that are not error conditions, but should possibly

be handled specially.
No/Maybe

LOG_INFO Informational messages No
LOG_DEBUG Messages that contain information normally of use only

when debugging a program
No

1.1.4.2 Computer Integrity Context Diagram
TBD

1.1.4.3 Computer Integrity State Definition and State Transition Diagram
TBD

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

31

1.1.4.4 Computer Integrity Unique Algorithm Design
TBD

1.1.4.5 Computer Integrity Development Tools
TBD

1.1.4.6 Computer Integrity External Interfaces
TBD

1.1.4.7 Computer Integrity Data Dictionary
TBD

1.1.4.8 Computer Integrity Message Formats
TBD

1.1.4.9 Computer Integrity Display Formats
Computer Integrity owns no displays

1.1.4.10 Computer Integrity Input Formats
Computer Integrity does not have a language-like interface

1.1.4.11 Computer Integrity Recorded Data
TBD

1.1.4.12 Computer Integrity Local Storage Requirements and Formats
TBD

1.1.4.13 Computer Integrity Printer Formats
Computer Integrity prints no data

1.1.4.14 Computer Integrity Interprocess Communications (C-to-C Communications)
Computer Integrity hardware performance data and configuration data (serial number) are stored in the local copy
of the SCT . Computer Integrity also generates FD and SEC packets of performance data as shown in Table IV
and Table V.

Table IV. FDs Generated by Computer Integrity

FD NAME DESCRIPTION STYP LEN

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

32

FD NAME DESCRIPTION STYP LEN
SnnnnnDISKU CCWS001 DISK USE COUNTER DEC 16
SnnnnnDISKE CCWS001 DISK ERROR COUNTER DEC 16

Table V. SECs Generated by Computer Integrity

SEC Number Name Source Destination
408 CPU Utilization CI SI (Master SCT)
409 Available Memory CI SI (Master SCT)
410 Disk Utilization CI SI (Master SCT)
411 Disk Accesses (DISK

USE COUNTER)
CI SI (Master SCT)

412 Disk Errors (DISK
ERROR COUNTER)

CI SI (Master SCT)

1.1.4.15 Computer Integrity External Interface Calls (e.g., API Calling Formats)
Computer Integrity provides no API calls

1.1.4.16 Computer Integrity Table Formats
Computer Integrity uses no tables.

1.1.5 System Configuration Table

After system initialization, the master copy of the System Configuration Table resides on the Master CCP.
Synchronized copies are maintained on all other computers via System Event Codes (SECs). Each SEC contains an
8-byte code which encapsulates such information as the sender’s logical address, the sequence number, and the
event code.

On each computer, the SCT is initially built from pre-stored files, then updated based on the changes that have been
recorded at the Master CCP. The SCT is maintained in shared memory, and an API is provided to allow the SCT
users to get access to the information. The system configuration can be viewed as a tree – the Set contains Test Sets,
each Test Set is a group of Subsystems, each Subsystem is a collection of processes. The structure of the SCT, and
the design of the API reflect this organization. Iterators are provided to allow looping through the sets to extract
information, shortcut “My” objects are also defined at each level to allow quick access to local configuration data.

Initial creation of the SCT is through Microsoft Access tables. These tables allow much of the configuration to be
defined prior to the start of the test, then updates as the system is configured.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

33

1.1.5.1 System Configuration Table Detailed Data Flow

SCT
(Master)

SCT
(Local)

SCT
Software

Subsystem
Integrity

SCT
Software

System Event Codes

System
Integrity

Subsystem
Integrity

System Event Codes

Health and Status FDs System Event Codes
 Health and Status FDs

SI API

Applications

ReadWrite

Update SCT

Update SCT

Read

Master CCP
Other Computer

Figure 19. System Configuration Table Data Flow

When an application at a computer requests a modification to the SCT through the provided API, the update request
is sent to the master copy of the SCT located on the Master CCP. There, the update is made as appropriate, and the
other SCTs are updated through System Event Codes. The updated data is then available to the application through
the Read APIs. Subsystem Integrity updates are handled in much the same way. Subsystem Integrity reports health
and Status through both System Event Codes and Health and Status FDs. Based on this input, System Integrity
evaluates the health of the subsystem and updates the master copy of the SCT. These updates are relayed to all
copies of the SCT through System Event Codes.

1.1.5.2 System Configuration Table Context Diagram
TBD

1.1.5.3 System Configuration Table State Definition and State Transition Diagram
TBD

1.1.5.4 System Configuration Table Unique Algorithm Design
TBD

1.1.5.5 System Configuration Table Development Tools
TBD

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

34

1.1.5.6 System Configuration Table External Interfaces
Since the SCT is brought up early within a Subsystem initialization routine, System Messaging will not be available
until a later time frame within the initialization sequence and any error reporting accomplished by the SCT will be to
a local temporary data store provided by the SCT. However, once the necessary mechanisms are in place allowing
the SCT to utilize System Messaging, the following System Messages may be generated by this CSC.

Message Number = SCT_ILLEGAL_TRANSITION
Message Type = Details
Severity = Error

Illegal state transition occurred: Subsystem %s from %s to %s.

Insert #1= Character String (subsystem name)
Insert #2 = Character String (old state)
Insert #3 = Character String (new state)

Help Text:
This message indicates that a state transition occurred in the named subsystem that was not expected based on the
design. Possible causes include: Incorrect System Integrity Design, Unforeseen initialization sequences, data
corruption.

This event will also cause the SCT to be logged to the SDC.

Message Number = SCT_SUBSYSTEM_STATE_CHANGE
Message Group = Details
Severity = Informational

Subsystem %s state changed from %s to %s.

Insert #1= Character String (subsystem name)
Insert #2 = Character String (old state)
Insert #3 = Character String (new state)

Help Text:
The named subsystem changed state. This message indicates the state change occurred as a planned transition under
normal operations.

Message Number = SCT_UNEXPECTED_SUBSYSTEM_STATE_CHANGE
Message Group = Summary
Severity = Error

Subsystem %s Unexpectedly changed state from %s to %s

Insert #1= Character String (subsystem name)
Insert #2 = Character String (old state)
Insert #3 = Character String (new state)

Help Text:
This message indicates that a failure occurred in the named subsystem. That subsystem changed state. System
Integrity may be taking recovery actions.

Additional Messages are TBD in the Detailed Design to indicate initialization errors during loading of SCT.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

35

1.1.5.7 System Configuration Table Data Dictionary
TBD

1.1.5.8 System Configuration Table Message Formats
TBD

1.1.5.9 System Configuration Table Display Formats
This CSC does not provide Table Display Formats.

1.1.5.10 System Configuration Table Input Formats
Input formats for the Subsystem Integrity CSC are defined by the SEC Formats and the API.

1.1.5.11 System Configuration Table Recorded Data
The SCT will attempt to utilize RM for most of its messaging needs since the recording mechanism for the SDC is
inherent within Reliable Messaging (RM). However, since the SCT is needed by RM and the SCT is early within
the Subsystem initialization routine, it must utilize services lower within the Message Stack (see Notes) such as
Application Messaging (AM) until which time RM is made available (post SCT build) to the SCT. The SCT will
employ and restrict itself to the various packet types provided within the Thor RTPS Packet Payload ICD
84K00351-001 for recordability.

1.1.5.12 System Configuration Table Local Storage Requirements and Formats
TBD

1.1.5.13 System Configuration Table Printer Formats
This CSC does not print anything, therefore does not provide Printer Formats.

1.1.5.14 System Configuration Table Interprocess Communications (C-to-C Communications)
Because the SCT resides on all computers, and must be kept current on all computers, there are a number of internal
operations involved in synchronizing and re-synchronizing the SCTs. These operations are described below.

1.1.5.14.1 System Configurtation Table Initialization
Typically, the Master CCP will be the first machine powered on, and will, as a result, also own the Master SCT,
built from the files on its local disk. However, there are cases where the configuration needs to be changed prior to
powering on the Master CCP. This can be accomplished by allowing the Master SCT to reside in places other than
the Master CCP, then transferring ownership to the Master CCP when it is up and running. The following protocol
is used to ensure that exactly one Master exists prior to creation of the Master CCP (See the state transition diagram
below):
1) In the Initialization State, the SCT process issues a broadcast Request SCT for the current SCT using

Application Messaging (AM). Reliable Messaging requires the SCT for its own initialization, and therefore
cannot be used to load the initial SCT. One of three things will occur: The request will timeout, one or more
Master Acknowledgments may be received, or a Master SCT response may be received.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

36

2) If the Master SCT response is received, the process loads the SCT from the message, and at completion of the
loading is the in the SCT Loaded State. This will be the typical path for computers other than the Master CCP
when the Master CCP is brought up first.

3) If one or more Master Acknowledgments are received, the ownership of SCT Master is still being decided, but
this computer is not an immediate candidate. It sits in the Waiting state while ownership is decided. Once
decided, the owner will send the Master SCT Response, at which point the process loads the SCT from the
response and continues to SCT Loaded state. There are some conditions under which the eventual master will
not be aware that the process is waiting, so after a specified time-out, the Waiting process returns to the
Initialization State where it repeats is broadcast Request SCT. Typically, the master will respond with the
SCT, but occasionally, it will return to the wait state, and in even rarer cases (all competing masters have failed
prior to any of them becoming master), it will compete to become the master. This state will be most
frequently used when power is applied to all computers simultaneously.

4) If the Request SCT times out, the process enters the competition for ownership of the Master SCT. It then
announces to the world its host name and its goal to become Master SCT via an Assert Master Broadcast. It
repeats this announcement 3 times, waiting Init SCT Timeout between each announcement. Very few
computers will reach this state. At least two annunciations are required. The second computer to reach the
competing state will have missed the first assert. The first computer then needs to Assert a second time to
notify the second computer of its rank. The third assert is only necessary if one of the messages is dropped.
The first computer powered on will reach the Compete state; typically this will be either the Set Master CCWS
or the Master CCP. If all computers are powered on simultaneously, one or two should reach this state, the rest
should reach the Waiting state. The length of the timeout has some bearing on how many reach this state. The
longer the timeout, the greater the number of competitors.

5) While in the Competing for Master state, the process may receive an Assert Master Broadcast from another
computer. If it does, it uses ranks hostname against the hostname of its competitor. Earlier in alphabetical
order is defined to be higher in rank. If it is of higher rank than the received broadcast, it ignores the broadcast.
If of lower rank, it returns to the Init state and issues a new Request SCT. The higher ranking competing
master will then respond with a Master Acknowledgment.

6) If no higher ranking computer Asserts during this period, this computer becomes the Master and completes
loading the SCT from files. In addition, once entering the competition, it responds to any Request SCT
broadcast with a Master Acknowledgment. This limits the competition to those computers that came up within
the timeout window of the first Request SCT. Note that if two or more computers timed out on the Request
SCT, future requesters may receive a Master Acknowledgment from more than one computer. A missed
Request SCT may result in another computer trying to assert after this computer has reached the Loading From
File state. At that point, the process responds with an Assert Master of that outranks all contenders.

7) After reaching the Master Loaded state, it responds to each earlier Request SCT (which it earlier responded to
with a Master Acknowledgment) with a Master SCT Response. Future Request SCTs receive the Master SCT
response that contains the current SCT.

8) Note that no computer can reach the SCT loaded state until the competition for master has been successfully
completed. Because this is true, no state change SECs have been sent. All computers powered on during the
competition have SCTs that reflect the state of the files on the computer that became master.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

37

Initialization

Compete for
Ownership

Load from Files

Master LoadedSCT Loaded

Loading SCT

Waiting

Master Acknowledgment

Master SCT

Request SCT Timeout

Master
SCT

Request SCT

Higher Ranking Assert Master

Other
Competing

SCTs

Assert Master(Rank)

Time Out = 1, 2

Wait Time Out
Other

Initializing
SCTs

Master SCT

Request SCT
Master Ack()

Time Out = 3

Request SCT

Master Ack()

Master Load Complete

Load Complete

Master SCT()

Request SCT

Master SCT()

Figure 20. SCT Initialization State Transitions

1.1.5.14.2 System Configuration Table Transfer of Ownership
When the Master CCP comes up, it needs to assume ownership of the Master SCT. However, in order to allow for
the Master CCP to be assigned, it cannot assume ownership based purely on file content. Assuming the Master CCP
does not own the Master SCT when it completes its SCT initialization, it then initiates a process to claim ownership
(See the state transition diagram below):
1) Prior to the Master CCP coming up, the Master SCT will be residing elsewhere within the Test Set (See SCT

Initialization). Once the Master CCP loads its SCT per the SCT Initialization state machine, its SCT will be in
an SCT Loaded state. From the SCT Loaded state, one of two things will occur, first if the SCT has any
updates to process following the initial table load from the Acting Master SCT, it will process these updates,
second the SCT will make its CCP Master host determination causing a transition from the SCT Loaded state to
the Acquire Master state.

2) Immediately following the transition of the Master CCP SCT to the Acquire Master state, it will 1) begin
storing all of the SCT update requests for historical reference, 2) send out a Request Master Relinquish message
using Application Messaging (AM) to the Master SCT for it to begin the transfer process thereby causing the
Master SCT to switch to its Relinquish Master state, and 3) begin assuming some of the responsibilities of the
Master SCT by sending out Master Acks for any SCT request and storing them for later transmission.
However, if a timeout occurs while in the Acquire Master state, the Master CCP SCT will simply re-issue the
Request Master Relinquish message to the Master SCT.

3) While the Master SCT is still in the Master Loaded state, it accomplishes a couple tasks. First it processes any
SCT update requests it receives from the System Integrity Stub as well as processing any SCT requests from
other Initializing SCTs, second the Master SCT processes the Request Master Relinquish message from the
Master CCP SCT by immediately storing the SCT updates, without processing, and transitioning into its
Relinquish Master state.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

38

4) Once the Master SCT is in the Relinquish Master state, it will continue to store any and all SCT update requests
for historical purposes to be utilized by the CCP Master SCT during the transition process. The Master SCT
will send a Master Ack for all SCT requests by other Initializing SCTs, and it will send out a Relinquish
Response message with the stored SCT updates, including their sequence numbers, back to the Master CCP
SCT as a confirmation of beginning the SCT transfer process. While in this state, if the Master SCT does not
receive the Relinquish Accept message after sending out the Relinquish Response message using AM (up to 3
times), the Master SCT will timeout and change back to the Master Loaded state and process all outstanding
SCT updates and requests.

5) It is important to note that at this time, when the Master CCP SCT is in the Acquire Master state and the Master
SCT is in the Relinquish Master state, the Master CCP SCT will synchronize itself with the Master SCT by
verifying that it has received and processed all of the SCT updates by comparing its last SCT update sequence
number with that of the first one received within the Relinquish Response message from the Master SCT. If
any of the SCT updates were not received by the Master CCP SCT, it will request them from the Master SCT
and process, re-requesting if necessary. Thereby synchronizing the Master CCP SCT with the Master SCT.

6) Following the receipt of the Relinquish Response message from the Master SCT, the Master CCP will
synchronize its collection of SCT update requests with those packaged in the Relinquish Response message
from the Master SCT, to determine stale updates and any overlapping updates between the two collections.
Once synchronized, it will send out a Relinquish Accept message using AM to the Master SCT and transition to
the Master Loaded state.

7) While the Master SCT is in the Relinquish Master state and receives the Relinquish Accept message from the
Master CCP SCT, it will flush its collection of SCT updates, requests, and discontinue sending out the Master
Acks to the other Initializing SCTs. The Master SCT will then transition to the SCT Loaded state, completing
the transfer of the Master SCT to the Master CCP SCT.

8) Once the Master CCP SCT has transitioned into the Master Loaded state, it will process all of the SCT updates
and requests it has stored, new update requests, and new SCT requests, thus completing the SCT Master
transfer.

Figure 21. SCT Transfer of Ownership State Transitions

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

39

1.1.5.14.3 System Configuration Table Synchronization
All updates to the SCT are initiated by System Integrity at the Master CCP. The Master SCT, which resides on the
Master CCP, then issues a SEC to all other copies of the SCT. This SEC contains the requested update, and a
sequence number that specifies the current version of SCT. The Master SCT also publishes this version number as a
System Status FD. When the SEC is received by a remote SCT, the version number is checked against the current
version number to ensure no updates have been missed (SSI also verifies the current SCT version matches the FD as
part of its SSR/DSR health check. See the Subsystem Integrity section, 1.3.3, of this document for details of the
periodic check.). If the SEC sequence number is correct, the update is applied to the SCT. If not, the SCT requests
all updates since its latest version directly from the Master SCT through a C-to-C. These updates are then applied as
received.

Relevant System Event Codes:
256: Subsystem Loaded
257: Subsystem Communicating
258: Subsystem Go
259: Subsystem No Go
260: Subsystem Not Communicating
261: Subsystem Not Loaded
264: New Active
393: Subsystem is running ORT
394: Subsystem is not running ORT
401: Subsystem Loaded
402: Subsystem Communicating
403: Subsystem Go
404: Subsystem No Go
405: Subsystem Not Communicating
406: Subsystem Not Loaded
413: Initial HC Received
500: SCT Relinquish Request
501: SCT Relinquish Response
502: SCT Relinquish Accept

SECs from Master SCT to Slave SCTs for change requests are TBD in the Detailed Design.

1.1.5.14.4 System Configuration Table Shared Memory
An SCT will reside on each platform (HCI, CCP, DDP, Gateway) with all updates being received by the Master
SCT. The individual SCTs residing on a Resource, including the Master SCT, will be referenced through its
external interface provided by this CSC. Each SCT will create an area of shared memory where it will store the
necessary objects comprising the SCT. The first object stored within this address space will be the Set object as
depicted below.

Figure 22. SCT Shared Memory

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

40

The SCT shared memory segment will be approximately 1 Megabyte in size. The final size of the memory space for
Thor will be based upon the number of elements within the SCT initialization files, the current size is more than
adequate for the SDE-1 data set, additional data sets will be made available for future testing. Each SCT API object
constructed will attach itself to the appropriate region of shared memory and establish the necessary links into those
objects containing the relevant information for the object constructed, i.e., if an SCTRSet, or SCTRTestSet object is
constructed, links to its name, relevant “My” information, and appropriate containers are established.

1.1.5.15 System Configuration Table External Interface Calls (e.g., API Calling Formats)
This CSC provides an interface for reading data form the SCT as well as writing information into the SCT. The
interface is comprised of multiple objects. As shown in Figure 23, the SCT is a tree of containers that reflects the
logical configuration of the system. The Set is a collection of Test Sets, Each Test Set contains a number of
Subsystems, Resources, Gateways and Groups. Resources are attached to external systems, and Subsystems are
composed of Processes.

SCTRSet

SCTRContainerTestSet

SCTRTestSet

SCTRContainerResourceSCTRContainerSubsystem SCTRContainerGateway SCTRContainerGroup

SCTRResourceSCTRSubsystem SCTRGroupSCTRGateway

SCTRContainerProcess

SCTRProcess

SCTRContainerAttachedTo

SCTRAttachedTo

Figure 23. SCT API Hierarchy

The collections are all derived from the SCTOrdered class (Figure 24). While there is no inherent ordering of the
various items, the use of the Ordered class allows searching for objects and stepping through each of the Objects.
Only those methods that manipulate the existing members of the set are provided through the SCT Ordered class.
This prohibits deletion of SCT elements through the API. No unique methods are provided in the SCT Ordered
subclasses, but the methods are redefined to allow only homogeneous sets.
Figure 25 specifies the methods of each of the classes. In order to be collected, each is derived from the
SCTCollectable class. All values in the classes are available as methods that return the values. The GetContainer

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

41

methods in each class allow retrieval of the containers as shown in Figure 23. A compete SCT API users guide can
be found on the clcsmail server at the URL:

http://www-clcs/project/syscontrol/redman/ ClassList.html

+First()
+Last()
+Find()

SCTOrdered

SCTRContainerResource SCTRContainerSubsystem SCTRContainerGateway SCTRContainerGateway

SCTRContainerTestSet SCTRContainerGroup SCTRContainerAttachedTo SCTContainerProcess

Figure 24. SCT Container Structure

+MySubsystem()
+MyResource()
+MyGroup()
+Name()
+GetContainer()

SCTRTestSet

+Name()
+Criticality()
+CurrentState()

SCTRProcess

+ResidingOn()
+Executing()
+RTCNPrimaryIPAddress()
+RTCNBackupIPAddress()
+DCNPrimaryIPAddress()
+DCNBackupIPAddress()
+ReferenceDesignator()
+GetContainer()
+PhysicalID()

SCTRResource

+Classification()
+CurrentState()
+ExecutingOn()
+Role()
+SwitchoverEnabled()
+GetContainer()
+Name()
+LogicalID()

SCTRSubsystem

+GetContainer()
+Name()

SCTRGroup

+SerialNumber()

SCTRComputer
SCTRGateway

+ChangeClassification()
+ChangeCurrentState()
+ChangeName()
+ChangeRole()
+ChangeSwitchoverEnabled()
+ChangeExecutingOn()

SCTWSubsystem

SCTWGateway

SCTCollectable

+GetContainer()

+GetContainerAllocated()

+GetContainerInUse()

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

42

Figure 25. SCT Object Inheritance

1.1.5.16 System Configuration Table Table Formats
The SCT is built from 12 files. Each file is comma delimited and provides information that defines the part of the
system configuration. The format of each of these files is described below.

1.1.5.16.1 Set File
This file specifies the name of the Set. This is static, but will vary from facility to facility. There is only one record
in this file.
Name: sets.txt

Format: Comma delimited

Table VI. Set File Format

Field Type Contents
Set Name String This will be the Set Name.

Example:
IDE

1.1.5.16.2 Test Set File
This file specifies the Test Sets that can exist in the Set. This is expected to be used primarily by Set Integrity.
Name: testset.txt

Format: Comma delimited,

Table VII. Test Set File Format

Field Type Contents
Test Set Name String A unique name for a test set. There are no constraints on the

contents of the string.

Example:
IDEA
IDEB

1.1.5.16.3 Group File
This file specifies the Groups of Resources that must be allocated to a single test set. This infomation is used
primarily by Set Integrity to ensure that no group is split across test sets.
Name: groups.txt

Format: Comma delimited

Table VIII. Group File Format

Field Type Contents

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

43

Group Name String The Name of the group. This name is unique
Group Type Integer 0 = Null Group

1 = Control Group
2 = Front End Zone Group
3 = Untitled Group

Example:
SME Gateways,2
VAB Gateways,1

1.1.5.16.4 Resource File
This file specifies the parameters for the individual resources in the Set.
Name: resource.txt

Format: Comma delimited

Table IX. Resource File Format

Field Type Contents
Host Name String The commonly used name for the Resource. This name is unique.
Physical ID Int16 Number that uniquely identifies the resource within the set.
Reference
Designator

String This field specify the physical location of the resource

Primary RTCN
IP Address

String Defines the IP Address to be used by the Resource when
communicating on the Primary RTCN. This field may be null (for
CCWSs)

Backup RTCN
IP Address

String Defines the IP Address to be used by the Resource when
communicating on the Backup RTCN. This field may be null (for
CCWSs and all processors prior to installation of the backup
RTCN).

Primary DCN IP
Address

String Defines the IP Address to be used by the Resource when
communicating on the Primary DCN. This field may be null (for
gateways)

Backup DCN IP
Address

String Defines the IP Address to be used by the Resource when
communicating on the backup DCN. This field may be null (for
gateways and all processors prior to the installation of the backup
DCN)

Example:
IDE_CCP01,1,1A365,123.123.255.255,123.123.255.255,123.123.255.255,123.123.255.555
IDE_CCP02,2,1A366,233.233.233.233,233.233.233.233,233.233.233.233,233.223.223.223
IDE_DDP01,3,1A399,433.433.433.433,555.555.555.555,444.444.444.444,333.333.333.333
IDE_DDP02,4,1A400,433.433.433.433,111.111.111.111,222.222.222.222,333.333.333.333
IDE_GSE01,5,2A120,433.433.433.433,322.222.222.222,334.343.434.343,212.341.234.123
IDE_GSE02,6,2A250,344.344.344.344,333.333.333.333,123.412.341.234,234.123.412.341

1.1.5.16.5 Subsystem File
This file specifies the definition of the Subsystem
Name: subsys.txt

Format: Comma delimited

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

44

Table X. Subsystem File Format

Field Type Contents
Subsystem
Name

String The name of the subsystem being defined. Because this file is used
by Set Integrity, a given subsystem name may appear more than
once. The combination of Test Set/Subsystem Name is unique
within the file.

Logical ID Int16 Unique identifier for the subsystem. Used as the CPU ID in the
network message header.

Switchover
Enabled

Integer When 0, Switchover is disabled. When 1 it is enabled. No other
value is valid.

Role Integer 0 = No Assigned Role
1 = Active
2 = Standby
3 = Hot Spare

Classification Integer The Type of Subsystem
0 = No Assigned Classification
1 = CCP
2 = Master CCP
3 = DDP
4 = CCWS
5 = Master CCWS
6 = Ops/CM
7 = Gateway

Example:
CCP1S,2,0,2,2
GSE1A,3,1,1,7

1.1.5.16.6 Subsystem to Test Set Map File
This file specifies the Test Set to which each Subsystem is allocated
Name: ss2ts.txt

Format: Comma delimited

Table XI. Subsystem to Test Set Map File Format

Field Type Contents
Test Set String Test Set Name. This will match a name provided in the test set file.
Subsystem String Subsystem Name. This will match a name provided in the

subsystem file.
Subsystem
Classification

Integer The Type of Subsystem. This is consistent with the definition in the
Subsystem File.
0 = No Assigned Classification
1 = CCP
2 = Master CCP
3 = DDP
4 = CCWS
5 = Master CCWS
6 = Ops/CM
7 = Gateway

Example:
IDEA,CCP1S,2

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

45

IDEA,GSE1A,7
IDEB,GSE1A,7

1.1.5.16.7 Process File
This file specifies the processes in the system.
Name: process.txt

Format: Comma delimited

Table XII. Process File Format

Field Type Contents
Process Name String A unique name for the process
Critical Integer 0 = Not a Critical Process

1 = Critical Process

Example:
CCPP1,0
CCPP2,0

1.1.5.16.8 Resource to Group Map File
This file specifies the Resources contained in each identified group.
Name: res2grp.txt

Format: Comma delimited

Table XIII. Resource to Group Map File Format

Field Type Contents
Group Name String Name of the Group. This will be one of the groups specified int he

Group File.
Resource Host
Name

String Name of the Resource allocated to the Group. This will be one of
the resources specified in the Resource File. A given resource will
only be assigned to one group.

Example:
SME Gateways,IDE_GSE01
SME Gateways,IDE_GSE02
VAB Gateways,IDE_GSE01

1.1.5.16.9 Process to Subsystem Map File
This file specifies the processes that make up each subsystem.
Name: proc2ss.txt

Format: Comma delimited

Table XIV. Process to Subsystem Map File Format

Field Type Contents
Subsystem
Name

String The Name of the Subsystem. This is one of the Subsystems
identified in the Subsystem File

Process Name String The Name of the Process that is part of the subsystem. This is one

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

46

of the Processes identified in the Process File.

Example:
CCP1S,CCPP1
CCP1S,CCPP2

1.1.5.16.10 Resource to Subsystem Map File
This file specifies the mapping between resources and subsystems.
Name: res2ss.txt

Format: Comma delimited

Table XV. Resorce to Subsystem Map File Format

Field Type Contents
Subsystem
Name

String The Subsystem Name. This is one of the Subsystems identified in
the Subsystem File.

Resource Name String The Host Name of the resource. This is one of the resources
identified in the Resource file.

Example:
CCP1S,IDE_CCP01
GSE1A,IDE_DDP01
GSE1A,IDE_GSE01

1.1.5.16.11 Resource to Test Set Map File
This file specifies the resources that have been allocated to the test sets. Allocation is defined to be that it may be
used. A given resource can be allocated to multiple Test Sets. It can only be in use by one at any given time.
Name: res2ts.txt

Format: Comma delimited

Table XVI. Resource to Test Set Map File Format

Field Type Contents
Test Set Name String This matches one of the Test Sets identified in the Test Set File.
Resource Name String This is the Host Name of one of the resources identified in the

Resource File.

Example:
IDEA,IDE_CCP01
IDEA,IDE_CCP02
IDEA,IDE_DDP01
IDEA,IDE_DDP02
IDEA,IDE_GSE01
IDEA,IDE_GSE02
IDEB,IDE_CCP02
IDEB,IDE_GSE01

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

47

1.1.5.16.12 Group to Test Set Map File
This file specifies the groups that have been allocated to the test sets. The group can be allocated to multiple test
sets, but can be in use by only one test set at any given time.
Name: grp2ts.txt

Format: Comma delimited

Table XVII. Group to Test Set Map File Format

Field Type Contents
Test Set name String This is the name of one of the Test Sets specified in the Test Set

File.
Group name String This is the name of one of the Groups specified in the Group File.

Example:
IDEA,HMF Gateways
IDEA,SME Gateways
IDEB,VAB Gateways

1.1.6 SCT Build

The SCT Build is a Microsoft Access Database. The Database Tables closely mirror the files built for the SCT (See
Figure 26). As currently populated, a single database contains the data for all sets. The same design supports
independent databases for each set, or some combination of the two. The tables can be grouped into two types: Data
and Relationship. The data tables specify the values for each object in the SCT (subsystems, resources, test sets,
etc.). The Relationship tables specify the relationships between objects (which subsystem executes on which
resource, the resources that belong to a set, etc.). In order to minimize errors introduced at data entry, all
relationship tables must contain values already defined in the Data Tables.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

48

Figure 26. SCT Build Data Tables

1.1.6.1 SCT Build Detailed Data Flow
TBD

1.1.6.2 SCT Build System Context Diagram
TBD

1.1.6.3 SCT Build State Definition and State Transition Diagram
TBD

1.1.6.4 SCT Build Unique Algorithm Design
TBD

1.1.6.5 SCT Build Development Tools
TBD

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

49

1.1.6.6 SCT Build External Interfaces
TBD

1.1.6.7 SCT Build Data Dictionary
TBD

1.1.6.8 SCT Build Message Formats
SCT Build generates no system messages.

1.1.6.9 SCT Build Display Formats
Each table has a spreadsheet like data entry table as shown in Figure 27

Figure 27. Resource Data Entry Table

Once all data for a set is correct, the set name is entered in the Current Set table and the Export SCT Macro is
executed. This produces the files for the set which can then be made available to OPS/CM for download to each of
the computers.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

50

1.1.6.10 SCT Build Input Formats
TBD

1.1.6.11 SCT Build Recorded Data
TBD

1.1.6.12 SCT Build Local Storage Requirements and Formats
TBD

1.1.6.13 SCT Build Printer Formats
TBD

1.1.6.14 SCT Build Interprocess Communications (C-to-C Communications)
TBD

1.1.6.15 SCT Build External Interface Calls (e.g., API Calling Formats)
TBD

1.1.6.16 SCT Build Table Formats
The SCT Build generates files used by the online SCT. The specifications for these tables are in the SCT Design
section of the document.

1.1.7 Redundancy Management Test Plan

1.1.7.1 Test Environment
The equipment necessary for the Thor 3.0 baseline test will include at a minimum:
1 CCP
2 DDP
3 CCWS
4 Ops/CM (optional)

1.1.7.2 Test Tools
In an effort to coordinate our testing efforts, this CSC can utilize the Ops/CM server in order to make the subsystem
state transitions into GO as well as the registration of the processes executing on the platform. The Redundancy
Management executables can be utilized to cycle through the process states. Stubs provided by Redundancy
Management can also be used to achieve the same level of testing.

1.1.7.3 Test Plan
It is the aim of this test plan to demonstrate the intended functionality/capability of the Redundancy Management
CSC as it pertains to the implementation of Thor 3.0, described within the Subsystem Integrity section of this
document. These tests will add to the current functionality/capability to build upon for Atlas. The test cases are
specified towards Subsystem Integrity, however due to the nature of the modifications necessary to implement Thor
3.0, the testing is not limited to Subsystem Integrity.
1 Demonstrate the ability to register and unregister a process both formally and informally while making the

action known to all SCTs residing on those platforms participating in the test.

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

51

2 Demonstrate the ability for a process to transition through all required states while making the action
known to all SCTs residing on those platforms participating in the test.

3 Demonstrate the ability for a process to report an error and have that error issued by SSI local to the
platform where the error was reported.

1.2 Notes

1.2.1 System Event Codes

Table XVIII. System Event Codes

SEC Number Name Source Destination
256 Subsystem Loaded SSI SI (Master SCT)
257 Subsystem

Communicating
SSI SI (Master SCT)

258 Subsystem Go SSI SI (Master SCT)
259 Subsystem NoGo SSI SI (Master SCT)
260 Not Communicating
261 Subsystem Not Loaded SSI SI (Master SCT)
262 Terminate SI SSI on Targeted

Platform
263 Switchover Directive SI SSI on Targeted

Platform
264 New Active SI All SSI (Local SCT)
393 Subsystem running ORT SSI SI
394 Subsystem not running

ORT
SSI SI (Master SCT)

395 No Packet Received
from GW

SI-DDP SI-CCP

396 Standby GSE detected
no poll from Active
GSE

GSEnS SI

397 GSE reports no response
from bus

GSEnA SI

398 HC not Incremented SI-DDP SI-CCP
399 HC has Decremented SI-DDP SI-CCP
400 Terminate Gracefully SI SSI on Targeted

Platform
401 Subsystem Loaded SI (Master SCT) All SSI (Local SCT)
402 Subsystem

Communicating
SI (Master SCT) All SSI (Local SCT)

403 Subsystem in Go SI (Master SCT) All SSI (Local SCT)
404 Subsystem NoGo SI (Master SCT) All SSI (Local SCT)
405 Subsystem Not

Communicating
SI (Master SCT) All SSI (Local SCT)

406 Subsystem Not Loaded SI (Master SCT) All SSI (Local SCT)
408 CPU Utilization CI SI (Master SCT)
409 Available Memory CI SI (Master SCT)
410 Disk Utilization CI SI (Master SCT)
411 Disk Accesses CI SI (Master SCT)
412 Disk Errors CI SI (Master SCT)
413 Initial HC Received SI-DDP SI (Master SCT)

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

52

SEC Number Name Source Destination
500 SCT Relinquish Request Master SCT Acting Master SCT
501 SCT Relinquish

Response
Acting Master SCT Master SCT

502 SCT Relinquish Accept Master SCT Acting Master SCT

1.2.2 Thor Process Table

Table XIX. Processes Generating Heartbeats to SSI

CSC Process Critical Periodic Rate
Redundancy Management Low Rate No Yes .1 Hz
Redundancy management Event Driven Yes No TBD
Data Distribution High Rate Yes Yes 100 Hz
Timer Services High Rate Yes Yes 100 Hz
TBD

1.2.3 Message Stack

Table XX. Message Stack

Command Processor
Contact: Brian Hooker

FD Commanding
(FD Write Services)

SW Required:None
Data Required: CVT (can be stale), OLDB (fil
Other HW/SS: None to get out of the box, but

CCP, and DDP to deliver it
Value Add: Standard interface for commandin
Contact: Julia Samson

Command Mangement API
SW Required: None
Data Required: SCT to build the packet
Other HW/SS: None
Value Add: Command Authentication

System Event Codes
SW Required: None
Data Required: SCT
Other HW/SS: None

System Messages
SW Required: System Message

Process
Data Required: SCT, System

Message Catalog
Other HW/SS: Master CCP -

Router Process, CCWS to see
the message.

Command Management
SW Required: Command Management Proces
Data Required: SCT
Other HW/SS: CCP in Go. For Psuedo FD de

DDP must also be in go. For Gateway FDs,
gateway must be GO, and activated. No dat
available from gateway unless the DDP is G

Value Add: Command Authentication
Contact: Brian Hooker

CORBA*
SW Required: ??
Data Required: ??
Other HW/SS: None
Value Add: Location
Transparency, COTS

Application Messaging
(AM)

SW Required: None is
required. NRS is Optional
and started by ??

Purpose:
Quick/reliable
notification of
system events

Contact: Ken Castner

Purpose: User Notification of
significant system events

Contact: Lynn Higgins

IPC Services
SW Required: IPC Process
Data Required: None
Other HW/SS: None
Value Add: Provides single queue for both loc
Contact: McMahon (Houston)

Contact: Bob
McMahon

Data Required: None
Other HW/SS: None
Value Add: Thin layer on top

of sockets
Contact: Steve Davis

Connectionless
Messaging (CLM)

SW Required: None
Data Required: None
Other HW/SS: None
Value Add:
Contact: McMahon

Reliable Multicast (RM)
SW Required: RM Process

(requires SCT to Start)
Data Required: Loaded SCT,

Activity, Logical ID, Network
Other HW/SS: None

Value Add: Automatic recording, Reliable del
Contact: Steve Davis

TCP UDP

84K00570-130 Revision: A
(System Control CSCI Redundancy Management CSC Thor 3.0 DP-3) July 8, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for
current approved revision of this document before using it for work

53

Software Required:
None

Data Required: None

Other HW/Subsystems: None
Value Add:

Software Required:
None

Data Required: None Other Hardware/Subsystems: None

This is the last page of the Document

